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1 Introduction

The annihilation of antibranes in the absence of brane partners occurs in a process known
as brane/flux annihilation [1]. It is well known that if a collection of D-branes form a
stack, the matrix of their positions becomes non-abelian. In the presence of other fluxes,
the famous Myers effect [2] occurs, causing the position matrix to become an irreducible
representation of SU(2) and effectively generating two new directions for the brane. Thus
a stack of D3-branes “embiggens”1 to become a single 5-brane. The 5-brane can unwrap

1This term was applied to the expanded brane in [32]. We prefer the descriptive term “embiggened

brane” to the more enigmatic “giant graviton” which also appears in the literature.
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itself by consuming one unit of H3 flux while traversing a 3-cycle, in the process decaying
into a new collection of D3-branes. This process has been studied in the context of the
Klebanov-Strassler solution for a warped deformed conifold throat [3], with the expectation
that such a throat would be part of a larger compact geometry [4, 5]. Understanding
these transitions is essential for building a knowledge of the landscape of string vacua, in
particular the history of a universe transitioning within it and the stability of the various
solutions; see for example [6]–[14].

Realistic string vacua must have stabilized moduli, and as is well-known, in type IIB
compactifications fluxes generically only stabilize the complex structure moduli and dila-
ton. The most well-studied mechanism for Kähler moduli stabilization is the introduction of
nonperturbative physics hosted on a 4-cycle, either wrapped 7-branes with strong coupling
dynamics or instantonic Euclidean 3-branes, as put forward by KKLT [6]. Such a mecha-
nism can stabilize Kähler moduli, but in general introduces a potential for 3-branes as well.
After being described in [15–17], the detailed form of this potential was worked out by Bau-
mann et al. [18], and both supersymmetric [19] and nonsupersymmetric [20] vacua for the
combined system of Kähler and brane moduli were worked out; for other work using this
potential, see [21]–[30]. Moreover, it was argued in [19, 20] that despite their lack of super-
symmetry, D3-branes feel a similar potential in the presence of the nonperturbative physics.

The question thus naturally arises how the nonperturbative moduli stabilization mod-
ifies the brane/flux annihilation decay, and therefore how the stability of the landscape of
string vacua is affected by nonperturbative moduli stabilization. It is this question that
we study in this paper. We argue that as the nonperturbative physics is determined to
leading order by the backreaction of the brane tension on the warped volume associated
to the 4-cycle [18], the effective tension of the embiggened brane is the relevant quantity.
Calculating the total potential coming from both brane/flux and nonperturbative effects
in the case of a single Kähler modulus, we show that depending on the parameters of the
solution (in particular the overall size of the geometry and the depth of the warped throat,
as well as the value of the flux superpotential), a number of different results can occur.

It is possible for the brane/flux potential to dominate, and for the decay process to go
through unchanged as described by [1]. Other possibilities exist as well, however. The non-
perturbative potential is negative, and if it dominates, the decay is in general shut down and
the world left with negative cosmological constant. An interplay between the two potentials
can exist such that a vacuum that was unstable without the nonperturbative effects can be
stabilized near zero vacuum energy. And finally, vacua with positive cosmological constant
may find that they cannot complete the decay, as they experience a classical instability
to spontaneous decompactification to ten dimensions during the brane/flux annihilation
process. This can occur even for antibranes that are stable against decay to large volume
before the Myers effect takes place.

This paper is organized as follows. In §2 we establish the setting by reviewing the
physics responsible for brane/flux annihilation in the warped throat. In §3 we investigate
the non-perturbative physics underlying moduli stabilization and argue for the effect of an
embiggened, decaying stack of antibranes on the dynamics. We also choose a particular
embedding for the nonperturbative 7-brane, the “simplest Kuperstein” embedding [31],
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which respects the symmetries of the decay process. In §4 we discuss the requirements for
volume stabilization, and the beginning- and end-points of the annihilation process. We
then consider the possible potentials along the path of the decay in §5, and give a summary
and example in §6. We conclude in §7.

2 Review of brane/flux annihilation

2.1 Warped throat

The arena for our investigations is a warped throat of Klebanov-Strassler (KS) type [3],
attached to a compact bulk geometry; we expect the results to be similar for more intricate
warped geometries [32–34]. In the absence of nonperturbative moduli stabilization and D3-
branes, the background is of imaginary self-dual type [5]. The metric takes the form2

ds2 = e2A(y)e−6u(x)g̃µνdx
µdxν + e2u(x)e−2A(y)g̃mndy

mdyn, (2.1)

where eA is the warp factor and e2u is the Weyl rescaling required to decouple the overall
volume mode from the four-dimensional graviton; we shall always assume e2u as constant
over the noncompact space.3 The five-form takes the form

F̃5 ≡ dC4 − C2 ∧H3 = (1 + ∗) 1
gs

[dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3] , (2.2)

where for imaginary self-dual backgrounds [17],

α(y) = e−12ue4A(y) . (2.3)

Three-form fluxes F3 and H3 are also generically present in the geometry, obeying the
imaginary self-dual condition ∗6G3 = iG3 with G3 ≡ F3 − τH3; we will assume for
simplicity constant dilaton eΦ = gs and vanishing RR zero-form potential C0 = 0, so
τ ≡ C0 + ie−Φ → i/gs.

We will be focused on the dynamics inside a Klebanov-Strassler throat associated with
a particular deformed conifold singularity with 3-cycles A, B. The throat is supported by
crossed fluxes wrapped on the 3-cycles,

1
4π2

∫
A
F3 = M ,

1
4π2

∫
B
H3 = −K , (2.4)

where we have taken α′ = 1. These fluxes stabilize the complex structure modulus ε at an
exponentially suppressed value [5],

ε ≈ e−πK/gsM , (2.5)

2We use the conventions of [38], which differ from [5] by an explicit factor of the string coupling in the

definition of the Einstein metric in terms of the string metric, gE
MN = gse

−Φgstr
MN ; in these conventions the

string and Einstein metrics coincide for the case of constant dilaton.
3An alternate approach to the realization of the Kähler modulus in the ten-dimensional metric has been

studied in [17, 35–37]. The difference does not affect the effective four-dimensional physics we will study.
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where ε characterizes the deformation of the conifold through its defining equation [39],

4∑
a=1

z2
a = ε2 , (2.6)

on four complex variables za. In general the deformed conifold’s metric can be written in
terms of a radial variable, a two-sphere, and a three-sphere; the region we are interested
in is the tip of the throat, where the two-sphere shrinks to zero size while the three-sphere
stays finite. The unwarped metric at the tip is [40],4

g̃mndy
mdyn =

(
2
3

)1/3

ε4/3
(

1
2
dr̄2 + dΩ2

3

)
. (2.7)

The warp factor, meanwhile, takes the form near the base of the throat [5, 17, 40, 41],

e−2A ≈ 21/3gsMI
1/2
0 ε−4/3e−2u , (2.8)

up to terms of order O(r̄2), where I0 ≈ 0.718 is a pure number. The total metric at the
tip of the throat thus takes the form

ds2 ≈ e−4ua2
0 gµνdx

µdxν + gsMb20

(
1
2
dr̄2 + dψ2 + sin2 ψdΩ2

2

)
, (2.9)

where we have for future convenience written the three-sphere metric as a coordinate ψ
along with the metric for a two-sphere, and defined the constants

a2
0 =

ε4/3

gsM(3/2)1/3b20
, b20 =

(
4
3

)1/3

I
1/2
0 ≈ 0.933 . (2.10)

We note that at the tip of the throat, the compact dimensions are independent of both ε

and e2u; both cancel precisely between the unwarped metric and the warp factor. Thus the
tip of the throat is independent of the Kahler modulus, with its size set purely by gsM .
We shall always take gsM � 1 so that the supergravity limit holds at the tip of the throat,
as well as gsN ≡ gsMK > (gsM)2 so that ε� 1.

We assume that this warped throat is part of a larger, compact geometry, though we
will make no attempt to characterize the remaining space. Compactness introduces several
issues, the first of which is the need for the C4-tadpole to vanish, which requires

χ(X)
24

= Q3 +
1

2κ2
10T3

∫
H3 ∧ F3 , (2.11)

where Q3 is the total charge in D3-branes and D3-branes and χ(X) characterizes the
contribution from the 7-branes on the underlying Calabi-Yau 4-fold X in the F-theory
picture. The total space is also characterized by a number of additional complex structure
moduli and Kähler moduli; the complex structure moduli can be stabilized by three-form
fluxes on the associated cycles [5, 42].

4The radial variable here is r̄ ≡ (3/2)1/6τ in terms of the variable τ of [3, 40].
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The Kähler moduli, on the other hand, must be stabilized in another fashion; we shall
consider the nonperturbative KKLT stabilization [6] associated to 7-branes hosting strong
dynamics (or alternately Euclidean D3-branes) wrapping the corresponding 4-cycles. For
simplicity, we will consider just one Kähler modulus, associated with the overall volume
e4u; we shall review the nonperturbative stabilization mechanism shortly.

In principle, the end of the KS throat and the compact geometry beyond provide correc-
tions to the geometry and background fields, even at the bottom of the throat [10, 43, 44].
We shall neglect these various corrections, focusing on the influence of only the nonper-
turbative moduli stabilization effects on the antibrane decay at the bottom of the throat;
the moduli stabilization is a universal effect in such models, while any other effects are
model-dependent. In general, the validity of this assumption depends on details of the the
compact geometry, which we won’t specify; but even in cases where additional corrections
arise, we may expect the general phenomena we will describe still to obtain qualitatively.

2.2 Life and decay of antibranes

Moduli-stabilized backgrounds of the type just discussed generally have AdS vacua preserv-
ing N = 1 supersymmetry; to obtain dS vacua with no supersymmetry, one mechanism is
to place some D3-branes in a the warped throat [6]. The action for a D3- or D3-brane in
this throat is

S3± = −µ3

gs

∫
d4x
√
−g4 ± µ3

∫
C4 , (2.12)

= −µ3

gs

∫
d4x
√
−g̃4(e−12ue4A ± e−12ue4A) , (2.13)

indicating that while a D3-brane feels no force from the background, the D3 experiences
a potential, which both gives a positive contribution to the vacuum energy and draws the
brane to the bottom of the throat, where by minimizing the warp factor the brane seeks
to reduce its energy.

The tip of the throat, however, prevents the antibranes from escaping to zero warp
factor, and thus they may settle down into a metastable vacuum. A further decay mech-
anism for the antibranes was worked out by Kachru, Pearson and Verlinde (KPV) [1] and
elaborated on by [10], in which the p D3-branes decay to M − p ordinary D3-branes while
changing the flux K by one unit, and this will be the focus of our investigation.

Once our D3-branes reach the tip, the surrounding flux attempts to screen them, low-
ering the effective charge and raising the effective stress energy, producing a net attractive
force and causing the D3-branes to clump [10]. There are also non-perturbative effects,
which we will discuss in detail shortly, that draw the clumping D3-branes to the SUSY
minimum as if they were D3-branes [20]. Once the branes are together, a new set of dy-
namics becomes available to them:5 the flux will induce them to puff up or “embiggen”
into a 5-brane wrapping an S2 on the tip via the Myers effect [2]. It is then possible for
the antibranes to “unwrap” themselves across the S3, decaying into ordinary D3-branes in
the process.

5In contrast to [9], we assume embiggening only occurs after all D3 branes arrive at the tip of the throat.
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Here we repeat the results of [1] as a review as well as to set our conventions. We
approximate our puffed up D3-branes as one anti-NS5-brane with the appropriate D3-
brane charge dissolved in it. The NS5 wraps a two-sphere on the tip, and we let ψ be the
direction normal to the brane on the tip. The action for our NS5-brane is [38],

S = −µ5

g2
s

∫
d6ξ[−det(g‖) det(g⊥ + 2πgsF)]1/2 − µ5

∫
[B6 + C4 ∧ 2πF2], (2.14)

where 2πF2 ≡ 2πF2−C2, and we have separated the metric based on whether it is parallel
or perpendicular to the D3-branes which source the NS5-brane. The effective charge and
tension of p antibranes is encoded in6∫

S2

F2 = 2πp . (2.15)

The field strength for F3 can be realized from the potential

C2 = M

(
ψ − 1

2
sin 2ψ

)
sin θdθ ∧ dφ , (2.16)

where θ and φ parameterize the two-sphere, while the six-form potentials may be obtained
from [38]

d

(
B6 −

i

gs
C6

)
=
ie4A

gs
(∗6G3 − iG3) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 = 0 , (2.17)

and thus may be chosen to vanish.7

We can now evaluate several relevant integrals,∫
S2

dθdφ
√

det g⊥ = 4π b20 gsM sin2 ψ ,

∫
S2

2πF2 = 4π2

(
p− Mψ

π
+
M

2π
sin 2ψ

)
,(2.18)

1
gs

∫
d4x
√

det g‖ =
∫
C4 =

a4
0

gse8u

∫
d4x
√
g̃4 , (2.19)

where recall g̃4 is the determinant of the noncompact components of the metric stripped
of the warp factor and Weyl rescaling; this is the effective 4D metric. So we can put
everything together to obtain the effective four-dimensional action

S = −
∫
d4x
√
−g̃4
C0

e8u

[
N3(ψ)

√
1− Z2e4uψ̇2 −Q3(ψ)

]
, (2.20)

where we have defined,8

Q3(ψ) = −p+M

(
ψ

π
− 1

2π
sin 2ψ

)
, N3(ψ) =

√
M2b40
π2

sin4 ψ + (Q3(ψ))2 , (2.21)

C0 =
4π2a4

0µ5

gs
=
µ3a

4
0

gs
, Z2 =

gsMb20
a2

0

. (2.22)

6Note that the correct D3-brane charge can be realized either with positive F2 on an anti-NS5, or negative

F2 on an NS5. Only the choice we have made leads to the correct potential for antibrane decay, however;

the opposite choice can be seen to lead to a potential that gains energy by adding antibrane charge.
7In [1] the WZ contribution to the potential was stated to be obtained from B6, but this is zero; the

relevant term actually comes from C4 ∧ F2.
8These functions are related to those in [10] by N3(ψ) = MV2(ψ)/π, Q3(ψ) = −MU(ψ)/π.
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We have chosen to assume that the only variation is the location of the 5-brane in the
ψ-direction with time. For the static case, the effective brane/flux potential is9

Vbf(ψ) =
C0

e8u
(N3(ψ)−Q3(ψ)) . (2.23)

This can readily be interpreted; N3 and Q3 are the effective D3-brane tension and D3-
brane charge, in units of a single D3, as the embiggened brane undergoes the transition.
As the brane moves from ψ = 0 to ψ = π, the charge Q3(ψ) varies from Q3(ψ = 0) = −p,
corresponding to the initial p D3-branes, to Q3(ψ = π) = M − p, the number of ordinary
D3’s in the final state, thanks to the effect of the coupling to C2. Meanwhile N3(ψ) varies
between a tension of p branes to a tension of M − p, with an additional contribution of
the same order of magnitude in the middle stemming from the NS5-brane bubble’s finite
extent, encoded in the sin4 ψ term; this keeps the tension always positive even while the
charge is passing through zero.

The NS5-brane is a source for H3, and as it sweeps out the three-sphere, it changes
the flux of this field (2.4) from K → K − 1. As a result of this change coupled with the
change from p D3-branes to M − p D3-branes, the tadpole constraint (2.11) is preserved,
with the only parts changing being the three-brane charge and the fluxes integrated over
the cycles associated to our warped throat:

− p+KM → (M − p) + (K − 1)M = −p+KM . (2.24)

This transition also shrinks the throat slightly as ε → eπ/gsM ε, but since gsM � 1 the
change is small. Because this decay process involves a removal of both antibranes and flux,
it is commonly called brane/flux annihilation.

3 Structure of the nonperturbative potential

Nonperturbative physics on a seven-brane or Euclidean D3-brane wrapping a 4-cycle Σ
can stabilize the overall volume of a warped compactification; however, this mechanism
introduces a potential for D3-branes as well. In this section, we review these effects and
argue for an expression capturing the corresponding potential on an embiggened brane
undergoing the brane/flux annihilation decay process.

3.1 Nonperturbative effects and the embiggened brane

For an ordinary D3-brane, this physics is determined by a superpotential [18]

Wnp(Y ) = W0 +A(Y )e−aρ , (3.1)

with

A(Y ) ≡ A0e
−ζ(Y ) = A0f(Y )1/n , (3.2)

9The same dependence on the Kähler modulus arises in the formalism of [17, 35–37] in the strongly

warped limit. We thank B. Underwood for discussions on this point.
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where W0 and A0 are constants that depend on the (already stabilized) values of the
complex structure moduli, Y are complex coordinates for the D3-brane, a is the numerical
constant 2π/n, ρ is a complex modulus containing the overall volume:

ρ ≡ 1
2

(
e4u +

1
3
k(Y, Ȳ )

)
+ ib , (3.3)

b is the axion related to C4 integrated over the corresponding 4-cycle, k is the geometric
Kähler potential on the space, n is the number of 7-branes/Euclidean D3-branes, and f

is their embedding function; that is, the branes sourcing the nonperturbative physics are
located at f = 0. (Note however that f in the superpotential is a function of the D3-
brane location, not the 7-brane location.) The potential for the coupled system of Kähler
modulus and 3-brane coordinates is derived from W and the Kähler potential K:

K = −3 log e4u = −3 log(ρ+ ρ− γk(Y, Y )/3) , (3.4)

in the usual way,

V = eK
(
gαβDαWDβW − 3|W |2

)
, DαW = ∂αW +W∂αK . (3.5)

From now on, we will absorb the constant γ ≡ µ3κ
2
10 into k.

Let us review how the dependence of (3.1) on the brane location was obtained by
Baumann et al. [18], focusing on the 7-brane case for definiteness. The nonperturbative
physics comes from strong coupling dynamics on a 7-brane, whose strength is controlled
by the effective 4D gauge coupling after the wrapped 4-cycle Σ is integrated over:

1
g2

=
µ3V

w
Σ

8π2
. (3.6)

Here V w
Σ is the warped volume of Σ. The authors of [18] calculated how V w

Σ is modified by
the backreaction of the mobile D3-brane tension, and thus how the strength of Wnp varies
with the location of the D3.

The tree-level correction to the warped volume was determined straightforwardly in
terms of the perturbation to the warp factor h ≡ e−4A by the brane’s tension:

δV w
Σ =

∫
Σ
d4Y

√
gind δh . (3.7)

This linear dependence will be of key importance for us. The effective coupling constant
on the 7-brane then enters the superpotential in the usual exponential form characteristic
of instantonic corrections,

A(Y ) = A0f
1/n ∝ exp(−µ3V

w
Σ ) . (3.8)

The dependence of the potential on the axion b ≡ Im ρ, in principle determined by the
backreaction of C4, was then fixed via holomorphy.

This discussion so far has applied to D3-branes, which in the absence of moduli sta-
bilization feel no force. In [19, 20] it was argued that the nonperturbative potential for

– 8 –
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an antibrane, despite the absence of supersymmetry, takes the same form (3.5) with the
function f(Y ) exchanged for its complex conjugate. This follows because the tension of
the brane and antibrane are identical, and so the contribution to (3.7), which is determined
by a gravitational perturbation, is unchanged at leading order.

Instead the sign of the C4 fluctuation flips, changing the sign of the contribution that
was fixed by holomorphy in the supersymmetric case. As was noted in [20], this affects
only a largely insignificant part of the physics, namely the fixed value of the axion b; other
than knowing that it is fixed at some value, this will play no role for us.

As a result, the nonperturbative effects on a single D3-brane can be determined. We
would like to push this a step further, and determine the effects on a stack of D3-branes
as they expand into a 5-brane. As discussed following equation (2.23), the embiggened
brane appears as an effective 3-brane with tension that does not match its charge due to
the extra contribution to the tension from the 5-brane’s extent over the two-sphere.

However, as we have just reviewed, the tension is far more important for calculating
the nonperturbative physics than the charge. The former determines the coupled equations
between the volume modulus and the brane coordinates, while the latter merely shifts the
fixed value of the axion b, which is not important to our discussion. It is the tension we
need to calculate the perturbation to the warped volume (3.7).

We shall thus focus entirely on the tension, disregarding the details of what happens
to b. Since the δV w

Σ depends linearly on this tension, we obtain for the warped volume of
Σ the single-brane result multiplied by N3(ψ),

δV w
Σ = N3(ψ)(δV w

Σ )0 . (3.9)

This quantity, however, enters the nonperturbative physics in the exponent, leading to:

A(Y ) = A0f(Y )N3(Y )/n . (3.10)

This is the key result, and encodes how the nonperturbative potential is modified by the
embiggened brane as its tension changes.

3.2 7-brane embedding

We shall find it useful to pick a particular 7-brane embedding so that we have a concrete
value of the function f . Various 7-branes can break the SO(4) isometry of the S3 at the tip
in various ways. Because the embiggened brane expands to fill a set of S2s foliating this
S3, it is convenient to pick a 7-brane embedding that preserves the SO(3) ⊂ SO(4) that
acts on this S2. If one does otherwise, different points on the 5-brane will feel a different
potential and it will deform; we choose to avoid this complication.

A natural choice is the so-called “simplest Kuperstein” embedding [31]:

f = z1 − µ , (3.11)

which obviously preserves the SO(3) acting on z2, z3 and z4. This embedding has vacua
for both D3 and D3-branes at z1 = ±ε [19]. To make this embedding compatible with the

– 9 –
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symmetry of the embiggened brane, we identify z1 = −ε cosψ; the brane decay will thus
correspond to motion from one vacuum to another, z = −ε to z = ε.

The parameter µ expresses how far down the throat the 7-brane reaches: rmin ∼ |µ|2/3.
Strictly speaking µ is determined by the flux-mediated moduli stabilization that fixes the
7-branes, but as far as we are concerned it is essentially a free parameter. We can, however,
characterize its possible values somewhat: in assuming that this 7-brane has the dominant
effect over any other branes or dynamics in the compact geometry, we are assuming it
penetrates at least some distance into the throat. An embedding with |µ| > 1 corresponds
to a 7-brane coming only a little ways down the throat, while |µ| < 1 is a “deep throat”
7-brane. For the very small value |µ| < ε, the 7-brane actually passes through the tip [31];
we shall in general assume |µ| � ε so the brane doesn’t go too deep in the throat, which
we expect to be the generic situation.

3.3 Complex structure and Kähler parameters

There are a number of distinct parameters affecting the physics. The details of the values
of these parameters are in general dependent on properties of the background outside the
throat, including the various other three-form fluxes that stabilize the complex structure
moduli, 7-brane moduli and dilaton. In our approximation the parameters are seven in
number: the three-form fluxes in the throat M and K, the nonperturbative sector param-
eters W0 and A0, the 7-brane location µ and the dilaton gs (all four of which are fixed by
unspecified fluxes) and the number of D3-branes p.

The two derived parameters that will be most important for us are the complex struc-
ture modulus ε, which is determined by K, M and gs, and the Kähler modulus ρ, primarily
determined by W0 and A0, though as we shall review in the next section, the other parame-
ters can have an effect as well. We shall mainly be focused on ε and ρ (as well as the flux su-
perpotential W0) so we review what might constitute “natural” values for these quantities.

For ρ, we have ρ1/4 ∼ eu giving the overall length scale of the entire compactification R
above the string scale ls ≡

√
α′ = 1 in our units. As we shall review shortly, for a standard

KKLT compactification we have

aρ = log
∣∣∣∣A0

W0

∣∣∣∣ . (3.12)

To trust our geometric description of the model, we require eu � 1; because of the loga-
rithmic dependence, even relatively modest volumes can lead to A0/W0 being extremely
large. Thus there is the well-known tension between the desire for large-volume solutions
and the fine-tuning of the parameters involved.

The ratio between the scale of physics at the bottom of the warped throat and that at
the top is determined by eAbott/eAtop ∼ ε2/3eu/

√
gsM [45]. If we take the warped throat to

correspond to a scale like the ratio of the electroweak and Planck scales, MEW/MPl ∼ 10−16,
we obtain

ε ∼ 10−24(gsM/
√
ρ)3/4 ∼ 10−22 − 10−26 , (3.13)
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for various reasonable values of gsM and ρ; since according to the definition (2.5) log ε ∼
−πK/gsM , it follows that K must then be larger than gsM by a factor of 50 or so. As
is well-known, a warped throat can generate such an exponential hierarchy with a quite
reasonable set of values for the fluxes. Depending on the physics of the warped throat in
question, ε closer to one may also be of interest and does not require significant fine tuning.

4 Structure of the complete potential

We now turn to our primary interest: the combination of the last two sections, which is
the effect of the nonperturbative moduli stabilization on the antibrane decay process of
KPV. We shall use the expression (3.10) in the potential (3.5), and compare the resulting
potential to that for the brane/flux annihilation (2.23). We are interested in two degrees of
freedom: the collective coordinate ψ standing for the transverse position of the embiggened
brane, which will now take the place of the general brane coordinate Y , and the volume
modulus ρ. The two pieces of the potential are,

V = Vbf + Vnp , (4.1)

where we can use the results from [20] to write the non-perturbative potential at the tip
of the KS geometry as

Vnp =
a|W0|2e−8u

|ω|2

(
ae4u

3
+ 2 + ω + ω +G(ψ)

)
. (4.2)

Here we have defined the ratio between the flux superpotential and nonperturbative su-
perpotential,

ω ≡ W0

A(ψ)e−aρ
, (4.3)

which plays a key role, as well as the real function of the brane coordinates,

G(ψ) ≡ 1
a
kab̄∂aζ∂b̄ζ̄ , (4.4)

where we have included the new term from the embiggening (3.10) in

ζ ≡ − log
(
A(ψ)
A0

)
= −N3(ψ)

n
log f(ψ) , (4.5)

and the geometric Kähler potential can be written as

kab̄ ≡ 1
Q

(ε2δab̄ − zaz̄b̄) , Q ≡ 21/6

31/3
µ3κ

2
4ε

4/3 , (4.6)

in terms of the conifold coordinates za (2.6), which are in general complex but become real
at the tip of the geometry.

Meanwhile we note that Vbf (2.23) depends on the volume ρ as,

Vbf =
C0

(ρ+ ρ̄)2
(N3(ψ)−Q3(ψ)) ≡ D(ψ)

(ρ+ ρ̄)2
. (4.7)

As is well-known, an antibrane alone tends to decompactify the space. Before turning to
the potential as a function of ψ, let us examine its behavior as a function of ρ.

– 11 –
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4.1 Volume-dependence of Vnp

As was shown in [20], the imaginary part of the ∂ρV equations does nothing but require that
the ratio of flux to nonperturbative superpotentials ω is real. This is realized by adjusting
the axion b ≡ Im ρ ∼

∫
ΣC4 to cancel out the remaining phase; b appears nowhere else and

so is always available to do this. From now on, we will ignore b, take ω to be real, and for
simplicity use ρ simply to refer to what is properly its real part: ρ = e4u/2.10

For the variation of the potential with respect to the volume, we find

∂ρV =
−a|W0|2

24ρ3ω2
(3G(2 + 2aρ) + (4 + 2aρ)(3 + 2aρ+ 3ω))− D

4ρ3
. (4.8)

Equating this to zero, we obtain a quadratic equation for ω. We will be working consistently
within the large-volume limit ρ� 1, where the solutions are

ω ≈ −a
2|W0|2ρ

2D

(
1±

√
1− 8

3
D

a|W0|2
(1 +

3G
2aρ

)

)
. (4.9)

This solution has a few important properties, the most immediately evident of which is
that it has no solution if the parameters of the problem conspire to make the argument of
the square root negative. As we shall see, this provides a key constraint on the stability of
the decay process.

The nonperturbative potential (4.2) has two important limits, depending on whether
G or ρ is larger. As we shall describe, when ρ � G, which we will call the volume-
dominated case, the parameter ω typically has a magnitude of the same order as ρ, while
for G� ρ, we call the nonperturbative potential brane-dominated and |ω| is instead of the
same order as G.

Let us describe the function G in more detail. Using (4.4), (4.5) we find

G(ψ) =
1
aQ

(
ε2δab̄ − zaz̄b̄

)
∂aζ∂b̄ζ̄ , (4.10)

with

∂aζ =
za

nz1

∂

∂z1
(N3 log f) , (4.11)

and using dz1/dψ = ε sinψ, the reality of the za at the tip and zaza = ε2−|z1|2 = ε2 sin2 ψ,
we obtain

G =
1

an2Q

(
log f N ′3(ψ) +

ε sinψN3(ψ)
f

)2

. (4.12)

The N ′3(ψ) term was absent in the case of a fixed number of branes not undergoing an
embiggening process.

Let us estimate the size of G(ψ). At the beginning and end points of the brane decay
we have sin(ψ = 0, π) = N ′3(ψ = 0, π) = 0, and consequently G = 0 there. At a generic

10The real part of ρ also includes the geometric Kähler potential k(Y, Ȳ ), but this is constant over the

tip, and we can absorb this constant into a rescaling of A0.
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value of ψ, both N3 and N ′3 are of order M ; the latter can cross zero. Assuming |µ| � ε,
these terms are approximately (M logµ)/ε and M/µ, and the former term (which is the
new term) is generically larger. (Note that if N ′3 crosses zero, it will be smaller in the
vicinity of that point.) If we take the larger term to dominate, we get

G ≈ | logµ|2N ′3(ψ)2

an2Q
. (4.13)

Thus estimating the order of magnitude of G, we have

G ∼ ε−4/3M2 log2 µ . (4.14)

4.2 Volume dominance and the endpoints of brane decay

We consider first the situation where ρ � G. This always occurs at least at two very
important points: the beginning and end of the brane decay, ψ = 0, π whereG = 0 precisely.

The function ω then has the solution

ω ≈ −a
2|W0|2ρ

2D

(
1−

√
1− 8

3
D

a|W0|2

)
, (4.15)

where for reasons of matching the supersymmetric solution, as we describe momentarily, we
have chosen the negative sign on the square root. It is readily apparent that real solutions
do not exist for all values of the parameters; when solutions do exist, it is straightforward
to verify that

ω = −2
3
aχρ , (4.16)

where 1 ≤ χ ≤ 2 depends on D/|W0|2. The nonperturbative potential then has the form

Vnp = −3
8

2χ− 1
χ2

|W0|2

ρ3
, (4.17)

and is always negative.

4.2.1 Endpoint of brane/flux annihilation

At the endpoint of the brane/flux annihilation, the system is entirely supersymmetric,
consisting of no antibranes, and branes only sitting in the minimum of the nonperturbative
potential; moreover, the perturbative potential vanishes, giving D(ψ = π) = 0. We then
see that, as claimed, the negative sign branch contains the proper smooth limit:

ωf = −2
3
aρf , (4.18)

so χf = 1. Recalling the definition of ω, this reduces to∣∣∣∣ W0

A(ψ = π)

∣∣∣∣ eaρf =
2
3
aρf , (4.19)
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the standard KKLT-type relation for the volume modulus. As usual, a large-volume solu-
tion is not generic and can only be obtained by a tuning of the parameters. Assuming a
large volume and taking the logarithm of both sides gives

aρf = log
∣∣∣∣A0

W0

∣∣∣∣+
M − p
n

log |µ|+ · · · , (4.20)

where we recalled that A(ψ) = A0f(ψ)N3(ψ)/n and N3(ψ = π) = M − p, and took µ � ε

so that f(ψ) ≈ µ; we have neglected terms of order log ρ.
In a traditional KKLT-type stabilization, it is the smallness of W0 that drives the

large size of ρ; this can also be achieved with large A0 or a combination of the two. As we
shall see shortly, the magnitude of W0 (but not A0) is constrained by the dynamics. Note
additionally that the D3-brane tension also contributes to the stabilized volume; indeed
for natural values of the parameters where A0 and W0 are not far from unity, it can have
a significant effect.

4.2.2 Initial point of brane/flux annihilation

For the point at the beginning of the process where the D3-branes have not yet started to
decay, we still have G = 0 but D > 0 in general. The problem reduces to the standard
coupling of the nonperturbative moduli stabilization to an uplifting set of branes explored
in KKLT [6].

Most significantly, we readily see from equation (4.9) that there is an upper limit on
D to permit such a solution:

3
8
a|W0|2 ≥ D(ψ = 0) , (4.21)

corresponding to the well-known fact that if the antibrane tension is too strong, it will over-
whelm the moduli stabilization and drive spontaneous decompactification [6]. Thus equa-
tion (4.21) corresponds to the decompactification constraint on the initial vacuum. Up to
numerical factors of order unity, the decompactification constraint for the initial vacuum is

|W0|2 ≥
p

M

ε8/3

g3
sM

. (4.22)

A large number of antibranes tends to decompactify the space, but this is strongly mitigated
by a small complex structure parameter ε reducing their effective tension.

We will assume this bound is satisfied so that such a vacuum exists. We then find

ωi = −2
3
aχiρi , (4.23)

where as before χi depends on Di/a|W0|2 and for permitted values, varies merely between
1 ≤ χ ≤ 2. We thus have for the initial volume,

aρi = log
∣∣∣∣A0

W0

∣∣∣∣+
p

n
log |µ|+ · · · , (4.24)

where we dropped logχ as being insignificant.
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Notice that if we assume that the large volume is primarily due to W0 being very small
as ρ ∼ log |1/W0|, we can easily run afoul of the decompactification constraint. The ratio
A0/W0, however, is unfixed and so in principle can be tuned to produce any volume despite
the constraint; a large A0 is in general required.

Also note that the difference between final and initial volumes is

∆ρ ≈ M − 2p
2π

log |µ| . (4.25)

This is a key result: in order for the volume not to change substantially during the
brane/flux annihilation process, we must have

ρ�
∣∣∣(M − 2p)

2π
log |µ|

∣∣∣ . (4.26)

Since M may be of order hundreds or more, as we require gsM � 1 with gs small, this
volume change becomes quite relevant for values of ρ that are not too large. This is our
second key result: a brane/flux decay with only modestly large volume will in general
change its volume during the course of the decay process.

Before moving on to a study of the middle of the decay, let us consider the initial
cosmological constant in the system. This comes from an interplay between Vbf , which is
positive, and Vnp, which is negative:

Λ = Vbf,i + Vnp,i = |Vnp,i|(λ− 1) , (4.27)

where we have defined

λ ≡ |Vbf,i|/|Vnp,i| ∼
Diρi
|W0|2

∼ p

M

ε8/3

g3
sM

ρi
|W0|2

. (4.28)

Evidently, λ > 1 leads to an initial metastable state with a positive cosmological constant,
while λ < 1 implies a negative cosmological constant. A realistic present-day vacuum
energy, in which case the brane annihilation process would correspond to the decay of our
world, would require λ extremely close to one,

|W0|2 ∼ Diρi , (4.29)

which, it is nice to verify, satisfies the decompactification constraint (4.21) with a factor
of ρ to spare. This constraint prevents existence of metastable vacua with larger positive
cosmological constant, characterized by λ ∼ ρ or greater.

4.2.3 General volume dominance

During the brane decay 0 < ψ < π, it is possible for G to grow and overwhelm the volume,
changing the form of the potential. Given the estimate for G (4.14), this will not happen
and the volume will continue to dominate the potential for

ρ� ε−4/3M2 log2 µ . (4.30)
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For the modulus ε chosen to solve the hierarchy problem, we expect the right-hand-side
to be in excess of 1032. Thus volume-domination of the nonperturbative potential persists
only if the volume is very large indeed; we need length scales 108 times the string scale for
universal volume-domination, bringing us into the realm of large extra dimension models.
(The fine-tuning of the parameters W0 and A0 required to obtain such a large volume
is truly extraordinary, as well.) We shall therefore largely focus on the brane-dominated
nonperturbative potential.

4.3 Brane dominance

Away from the beginning and the end of the decay, we will have G� ρ if

ε−4/3M2 log2 µ� ρ , (4.31)

and as just argued we expect this situation to be the easier to realize. The solution (4.9)
for ω becomes

ω ≈ −a
2|W0|2ρ

4D

(
1−

√
1− 4DG

a2|W0|2ρ

)
, (4.32)

which takes the value

ω = −χ′G , (4.33)

with 1 ≤ χ′ ≤ 2 when a solution is possible. The nonperturbative potential in this limit
takes the form

Vnp ≈ −
a(2χ′(ψ)− 1)|W0|2

4χ′(ψ)2ρ2G(ψ)
. (4.34)

In the next section, we shall describe the consequences of the nonperturbative potential on
the decay of the embiggened antibranes.

4.4 Validity of the nonperturbative expansion

The nonperturbative term going like e−aρ in (3.1) is in principle only the leading term in
an expansion of exponentials in ρ; it is only valid to neglect other terms when the leading
term is small. At large volume e−aρ is always small, but one may wonder whether A(ψ)e−aρ

might still be large, thus invalidating the expansion.
Using the definition (4.3) of ω, the size of the nonperturbative term is

A(ψ)e−aρ =
W0

ω
, (4.35)

and this furnishes an upper bound on |W0| to be less than ω, which we have now shown
goes like the larger of ρ and G. Since |W0| is generally taken small to support large volume
solutions, this is not in general a difficult constraint to satisfy.
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5 Moduli-stabilized brane/flux transitions

In what follows, we will study the ψ-dependence of the total potential with (4.9) enforcing
that it sits at an extremum in the ρ-direction (if such an extremum exists). Thus we are
assuming that the ∂ρV = 0 equation, which held at ψ = 0 to define the initial vacuum,
remains satisfied and adjusts the system accordingly as the the brane rolls down a slope
in ψ. We expect that an analysis involving both ρ and ψ as dynamical fields, beyond the
scope of this paper, would reflect the same phenomena we uncover here.

As we have already seen, several interesting things can occur during the decay of the
embiggened brane under the influence of the nonperturbative potential. We have reviewed
how there is a limit on the initial (positive) cosmological constant to have a metastable
vacuum at all; in the next subsection, we shall describe how even if this constraint is sat-
isfied, certain positive cosmological constant models violate the related bound during the
decay, and thus decompactify. We shall then discuss how for cosmological constants near
zero it is possible for the nonperturbative potential to stabilize an otherwise perturbatively
unstable solution, potentially saving a supersymmetry-breaking universe like our own from
quick decay. Total dominance of the nonperturbative potential, however, occurs only for
negative initial cosmological constants. Finally, we note how even if the transition com-
pletes, the overall volume can be changed. In the next section, we present an example
illustrating these possibilities.

5.1 Spontaneous decompactification

For the cases where G � ρ during the decay (or even G ∼ ρ), we can run into trouble
satisfying the ∂ρV = 0 equation (4.9). We assumed that |W0| took a value such that a
solution existed before the decay, requiring (4.21); even so, we can run into difficulties in
the middle of the decay process.

The decompactification constraint for G > ρ is modified: solutions to (4.32) require

a2|W0|2ρ > 4D(ψ)G(ψ) , (5.1)

and using the estimate

D ≈ ε8/3

g3
sM

, (5.2)

we can parameterize the constraint as approximately,

|W0|2 >
ε4/3M log2 µ

g3
sρ

. (5.3)

It is entirely possible for |W0| to be such that the initial metastable vacuum for the an-
tibranes exists, but the constraint is then violated during the course of the decay (for an
example, see figure 5 in the next section). We can parameterize this in terms of the initial
cosmological constant parameter λ; we find

λ <
p

M

ρ2

G
, (5.4)

– 17 –



J
H
E
P
0
5
(
2
0
0
9
)
0
1
8

while a metastable vacuum at the outset only required λ < ρ.
The inability to satisfy the equation (4.9) at some point during the decay means the

potential in the ρ-direction no longer has a local minimum; the potential has “opened up”
to a slope leading down towards large volume. Although in principle one would need to
solve the full dynamical coupled system of ψ and ρ including kinetic terms to obtain the
full motion, we generically expect that once the system finds itself without a minimum in
the ρ-direction, it will roll to large volume.

Thus it is is possible for the brane/flux annihilation process to spontaneously decom-
pactify the otherwise metastable system. The decay of the embiggened brane presumably
completes, but the system is no longer of phenomenological interest; it has decayed to
ten-dimensional flat space. Metastable vacua with large initial cosmological constant are
the most in danger of this.

Can this occur for an initial state with vacuum energy near zero? This coincides with
λ = 1, implying for stability

ε−4/3M

p
M2 log2 µ < ρ2 , (5.5)

where we used (4.14) to estimate G.
This requires a substantial volume. For example, for the case of the throat solving

the hierarchy problem, we need something of the order ρ > 1016, or length scale 104 times
the string scale. While not as large a volume as was necessary for the nonperturbative
potential to become volume-dominated, this is still a substantial volume representing a
tremendous tuning of A0 relative to W0.

Thus we see that a set-up with a realistic cosmological constant may spontaneously
decompactify before the brane decay can complete for a modest compact volume. In
general, a deep throat encourages spontaneous decompactification, while a large volume
discourages it; the former is much more generic in the space of parameters.

5.2 Nonperturbative dominance

Assuming the system satisfies the decompactification constraint throughout its evolution,
the next question to ask is whether the nonperturbative potential is smaller than, similar to
or much larger than the perturbative potential. In the more generic case of G� ρ, we find

|Vnp|
|Vbf |

∼ |W0|2

GD
, (5.6)

∼ 1
ρ

|W0|2

|Wmin
0 |2

, (5.7)

where |Wmin
0 |2 is defined by the minimum allowed value for the decompactification con-

straint (5.3).
We readily see that if W0 is near the smallest value allowed to prevent spontaneous

decompactification, the nonperturbative potential is suppressed relative to the brane/flux
potential by a factor of the large volume. In this region, then, the brane decay potential
is unmodified from the original study of [1], and the decay goes through as described
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there. Thus, it is entirely possible for brane/flux transitions to proceed unmodified by the
nonperturbative physics.

In terms of the initial cosmological constant parameter λ, we have

|Vnp|
|Vbf |

∼ p

M

ρ

G

1
λ
, (5.8)

demonstrating that the λ� 1 systems with large cosmological constant, the ones in danger
of decompactifying, are always dominated by the brane/flux potential during their evolu-
tion. Thus positive cosmological constant metastable states, if they do not decompactify,
tend to decay in the original way described by KPV.

The vacua where Vnp clearly dominates have λ � 1, that is, they have negative cos-
mological constant. These are less interesting phenomenologically, since our universe has
positive vacuum energy and any hypothetical states in the early universe that decayed
to our vacuum would have had larger energy still. Vnp for G � ρ has its ψ-dependence
primarily from −1/ρ2G(ψ), except at the endpoints, where it becomes −1/ρ3. So, Vnp is
most negative near ψ = 0 and ψ = π, and has a less negative “bump” in the middle, of
size ρ/G closer to zero; thus Vnp tends to rise in the middle of the annihilation process,
shutting down the decay and stabilizing the system at small ψ if it is dominant (see for
example figure 2 in section 6).

It is, however, possible for models near λ = 1, a realistic cosmological constant, to have
the two potentials similar sizes, |Vnp| ∼ |Vbf |. Even if the brane/flux potential would lead
to unobstructed decay, the “bump” from the nonperturbative potential can in this case
provide a stabilizing barrier. Thus it is possible for a universe with vacuum energy similar
to ours which was perturbatively unstable from Vbf alone, to be stabilized perturbatively
by the nonperturbative potential, as in figures 3 and 4.

Inflation in the context of the brane/flux annihilation decay was studied in [10] (see
also [9]), and when the brane/flux potential dominates the story from there will be un-
changed. Inflation obviously will not occur for nonperturbative-dominant cases, which have
negative vacuum energy; it is possible that the regime where both potentials contribute
could lead to an enhanced flat direction if they are tuned just right, but the caveats of the
difficulty of such a tuning outlined in [10] still remain.

5.3 Finite volume change

While the brane decay is proceeding, the value in the ρ-direction that minimizes the po-
tential may vary. The analogous equation to (4.20) and (4.24) for any point along ψ is

aρ(ψ) = log
∣∣∣∣A0

W0

∣∣∣∣+
N3(ψ)
n

log |µ|+ · · · , (5.9)

where . . . contains log ρ or logG, depending on which is larger. The corresponding volume
change associated to the second term is of the order,

∆ρ ∼M logµ . (5.10)
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It is useful to note that G is of the order (4.14),

G ∼ ε−4/3(∆ρ)2 , (5.11)

which implies that in the volume-dominated case of ρ� G,

∆ρ
ρ
� ε2/3

ρ1/2
, (5.12)

and no significant volume change occurs. However, in the more generic case of brane-
dominance, it is possible for such a change to occur. If log |A0/W0| is only of order hundreds
or thousands, it will generically be the case that the volume change will be significant, even
if log |µ| is of order one.

Note that the sign of the volume change is determined by log |µ|: a 7-brane only
going a little way into the throat will have log |µ| > 0 and hence ∆ρ > 0, while a 7-brane
penetrating far into the throat will produce ∆ρ < 0. Since we expect the former to be
more common, volume increase is more generic, but either is possible as in figure 6.

We also note the possibility that the volume may be dominated by the flux at all
points: N3(ψ) log |µ| � log |A0/W0| for all ψ. The volume would then simply be

aρ(ψ) ≈ N3(ψ)
n

log |µ| , (5.13)

and would grow by a factor of M/p during the course of the decay. (log |µ| < 0 in this case
would lead to negative volume, outside the bounds of our large-volume approximation.)
Although this is a different scenario than the one usually envisioned in a KKLT-type model,
it may actually be somewhat generic, as large M logµ is substantially more natural than
large log |A0/W0| due to the logarithm. However, we note that in this case G ∼ ε−4/3ρ2,
implying G� ρ2; one can then show that satisfying the decompactifcation constraint (5.1)
implies that λ < 1 in (4.28), leading to an unphysical negative cosmological constant at
the beginning and end of the transition.

6 Summary and example

In summary, we have found the following broad classes of dynamics for the moduli-stabilized
embiggened brane system:

• Metastable vacua with large positive cosmological constant can spontaneously de-
compactify during the decay, returning to ten-dimensional flat space. If they do not
decompactify, the brane/flux annihilation proceeds as originally described.

• Vacua with vacuum energy near zero can be unstable to decompactification, but can
also be stabilized against perturbative decay by the nonperturbative physics.

• Vacua with negative cosmological constant are dominated by the nonperturbative
potential, and the decay is shut down.
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1.2 ´ 10-10

Figure 1. The full potential (black, solid) and its components Vnp (blue, dashed) and Vbf (red,
dotted) for |W0| = 0.2, dominated by the brane/flux potential.

0.5 1.0 1.5 2.0 2.5 3.0
Ψ

-1.5 ´ 10-9

-1. ´ 10-9

-5. ´ 10-10

Figure 2. The full potential (black, solid) and its components Vnp (blue, dashed) and Vbf (red,
dotted) for |W0| = 2, dominated by the nonperturbative potential.

• If the initial volume is only modestly large, it can grow or shrink during the course
of a successful brane decay, with the sign of the change determined by how deep the
7-brane hosting nonperturbative physics penetrates into the throat.

For an example, consider the following choices of parameters:

ε = 0.05 , log
∣∣∣∣A0

W0

∣∣∣∣ = 1000 , gs =
1
10
, M = 100 , µ = 2 ,

p

M
= 0.08 , (6.1)

where we will allow W0 to vary in the vicinity of unity; the nonperturbative term (4.35) is
always small. Note that this is not a particularly realistic model for solving the hierarchy
problem, as the throat is extremely shallow; we chose it for computational convenience
rather than realism.

For |W0| < 0.2, the brane/flux potential is dominant; this is plotted in figure 1. Mean-
while for |W0| > 2, the total potential is dominated by the nonperturbative contribution,
as plotted in figure 2. In the former case the initial vacuum energy is positive, and the
decay process proceeds unobstructed, while in the latter case the vacuum energy is negative
and the decay is obstructed perturbatively. We choose to plot values where the smaller
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Figure 3. The full potential (black, solid) and its components Vnp (blue, dashed) and Vbf (red,
dotted) for |W0| = 0.603, with initial vacuum energy close to zero.

0.5 1.0 1.5 2.0 2.5 3.0
Ψ
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-5. ´ 10-11

5. ´ 10-11

1. ´ 10-10

Figure 4. The full potential (black, solid) and its components Vnp (blue, dashed) and Vbf (red,
dotted) for |W0| = 0.584, with metastable vacuum energy close to zero.

potential still makes some contribution for visual interest; as W0 moves further away from
the cross-over region, one potential or the other dominates completely.

For intermediate values both potentials contribute; in particular, in the vicinity of
|W0| = 0.60325 the initial cosmological constant is tiny as resulting from a near-perfect
cancelation of the two contributions to the potential; the system embiggens only slightly
to a metastable vacuum with a negative cosmological constant, figure 3. Perhaps of more
interest is |W0| = 0.5837 (figure 4), where the brane grows slightly and drops into a
metastable vacuum with cosmological constant near zero.

One can also see that for |W0| < 0.025, the argument of the square root in the solution
for ω goes negative and the decompactification constraint is not satisfied (figure 5). Thus we
see clearly: very small |W0| leads to decompactification, larger to perturbative-dominance
with allowed decay, larger still to a mixture with vacuum energy near zero and largest of
all to nonperturbative dominance with a negative vacuum energy and decay shut down.

Finally, we note that since ρ is of order 104 and ∆ρ = M logµ of order 102, the volume
changes on the 10−2 level during the decay, going from ρi = 1005 to ρf = 1064. We plot
the change for µ = 2 as well as µ = 1/2 in figure 6, showing both a growth and shrinkage
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Figure 5. The function ω and the argument of the square root in its formula (4.9) for |W0| = 0.02;
note the gap where ω has no real solution, leading to spontaneous decompactification.
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1000

1050

1100
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Figure 6. The variation in the Kähler modulus ρ for µ = 2 (upper) and µ = 1/2 (lower). Values
further from unity lead to greater variation as log |µ|.

of the compact volume; values of µ farther away from unity will increase the effect.

7 Conclusions

We have demonstrated that the interplay of nonperturbative moduli stabilization and
brane/flux annihilation can have a rich variety of effects. Our results have a number
of consequences for the stability and decay of flux compactifications of string theory.

Stabilization of stacks of antibranes at positive or very near zero cosmological constant,
which without nonperturbative physics may decay classically, has obvious phenomenologi-
cal utility for construction of realistic string vacua. The existence of spontaneous decom-
pactification, on the other hand, implies that any vacuum transitions in the early universe
mediated by a brane/flux annihilation process are less stable than would otherwise be ex-
pected; this places more stringent bounds on the path such a transitioning universe could
have taken to avoid ending up in ten dimensions at some point in its history. Moreover, a
background that makes many such transitions will have changed its volume with each de-
cay. If the nonperturbative physics is hosted not far down the throat in each case, this can
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accumulate and cause the volume to grow to a size substantially above the string scale with
less than the usual fine tuning required, although if this contribution dominates, another
source of positive vacuum energy must be added.

These calculations could be expanded upon in a number of ways. We have performed
the entire analysis assuming the existence of only one Kähler modulus; a generic compact-
ification will have many, and it is possible that the interaction between them in addition
to their effects on the brane decay could lead to novel effects. We have not studied the
dynamical system including kinetic terms for the Kähler modulus as well as the brane
coordinate; such a calculation could shed light, for example, on the process of spontaneous
decompactification and whether it might be avoided in certain circumstances, for example
if the decay occurs sufficiently quickly. We have not included the perturbative backreaction
of the rest of the geometry outside the throat; this is one more possible source of forces on
the brane system, as well. We anticipate, however, that the broad classes of phenomena
we have outlined will persist in these more general cases.
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